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Abstract

Solving economic models with heterogenous agents requires computing aggregate dynamics con-
sistent with individual behaviors. This paper introduces the finite volume method from the mathe-
matics literature to enlarge the set of numerical methods available to compute dynamics in continu-
ous time. Finite volume discretization methods allow theoretically consistent dimensional and local
adaptivity that guarantee the mass conservation and positivity of the distribution function of the dis-
cretized system. This paper shows examples of 1) the Ornstein-Uhlenbeck process 2) the Aiyagari-
Bewley-Huggett (wealth+income heterogeneity) model and 3) the lifecycle (wealth+income+age hetero-
geneity) model. The numerical exercises show that for the current dimensionality of the problems in
economics, the finite volume method (with or without adaptivity) outperforms pre-existing methods.
This paper further provides a companion open-source implementation of the finite volume method at
<https://github.com/sehyoun/adaptive finite volume> to reduce the testing time of the finite vol-
ume method.

1 Introduction

With recent advances in computing technology, economists started to model heterogeneous agents explicitly
instead of relying on the representative agent assumption. Such analyses follow two steps in general. First,
researchers solve the dynamic programming problem to model individual agents’ behaviors. Given the
behaviors, one solves for the evolution of the distribution of idiosyncratic state variables. A typical strategy
is to simulate a finite sample of agents to compute aggregate quantities like the aggregate capital. Though
the dynamic programming has received lots of attention, the aggregation step, unfortunately, has not.

The simplicity of implementing the Monte Carlo simulation partly explains the lack of attention. The
Monte Carlo simulation method, however, has limitations. As a (stochastic) simulation method, Monte Carlo
simulation has sampling errors that only scale at O(N−1/2), where N is the number of simulation agents.
As documented in Algan et al. (2014), the number of simulation agents to control the sampling error can be
quite large. For the example given in the paper, the sampling error masks the underlying macroeconomics
even with 100,000 simulation agents. Second, Achdou et al. (2017) shows that one can solve the dynamic
programming problem much faster in continuous time. However, the Monte Carlo simulation method does
not directly generalize to continuous time, and the generalization introduces many hyperparameters that
one needs to tune. The Heun scheme for the Monte Carlo simulation is tested in section 3.2, but the test
only reaffirms the limitations of the Monte Carlo method noted in Algan et al. (2014), even after tuning the
hyperparameters.

For discrete time, researchers have already started approximating the distribution directly to handle
the sampling error. (Algan et al., 2008; Winberry, 2018) use parametric functions, and (Ŕıos-Rull, 1999;
Reiter, 2009; Young, 2010) use histograms to approximate the distribution function. They report speed and
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Monte Carlo Simulation Variational/Function-Approximation

Discrete Time Krusell & Smith (1998)

Parametric Non-Parametric

Algan et al. (2008) Ŕıos-Rull (1999)

Winberry (2018) Reiter (2009)

Young (2010)

Continuous Time
Euler-Maruyama4 Achdou et al. (2017)

Heun Method This Paper

Table 1: Aggregation methods in economics.

accuracy gains over the Monte Carlo simulation. In fact, the function approximation method can also be
coupled with the perturbation method to solve economic problems with aggregate shocks (See Reiter (2009)
for discrete time and Ahn et al. (2018) for continuous time). The perturbation method in continuous time,
shown in Ahn et al. (2018), is faster and more accurate than other alternatives in the JEDC special issue on
heterogeneous agent methods (Den Haan, 2010).

This paper is a continuation of the “histogram” approach to continuous time. Though unrecognized
in economics, this approach has been around for decades in the mathematics literature on discretization
of partial differential equations. In a groundbreaking work, Achdou et al. (2017) uses the finite difference
methods to solve for the distribution in continuous time.1 The advantages of the (non-parametric) function
approximation approach explain some of the speed gains exhibited in (Achdou et al., 2017; Ahn et al., 2018).
However, the finite difference method has some limitations, and hence, this paper introduces the finite volume
method from the mathematics/engineering literature to address these issues.

The need to preserve mass and to ensure positive density restricts the finite difference method to uniform
regular grids (see figure 1a). To handle this difficulty, Achdou et al. (2017) introduces a numerical patch (not
yet justified by theory) to be used with non-uniform regular grids (see figure 1b). The finite volume method,
however, converges to the correct distribution even with non-uniform regular grids (Theorem 3.8 of Eymard
et al. (2000)).2 In fact, the finite volume method is flexible enough to allow non-regular grids like the one
shown in figure 1c. Researchers have successfully leveraged the flexibility of the finite volume method with
adaptive refinements to solve models faster and/or more accurately in molecular biology (Ferm et al., 2006),
physics (Lan et al., 2002), semi-conductor design (Li et al., 2001), and tsunami/flood dynamics (D. L. George
& LeVeque, 2006; D. George, 2011).3 For economic problems, the adaptive refinements introduced here can
lead to an accuracy gain over regular grids, and the speed gain is confirmed for test problems in section 3,
the same accuracy can be achieved using only 14% of the grid points required by the regular grid for the
lifecycle model.

Before proceeding to the rest of the paper, an open-sourced code/toolbox for this paper is available
at <https://github.com/sehyoun/adaptive finite volume> with the corresponding documentation at
<https://sehyoun.com/adaptive finite volume>. Applied researchers are recommended to skim over
section 2.1 and work through the tutorials in the documentation.

2 Finite Volume Method

2.1 Intuition

This section introduces the intuition behind the finite volume method. We recommend that most readers
read the intuition and follow the tutorials in the documentation. Readers only interested in the formal
derivation can jump to section 2.2.

1In continuous time, this step solves the Fokker-Planck equation.
2With a uniform regular grid, the finite difference and finite volume method result in the same discretized system.
3Grids with this type of local adaptivity do not satisfy the regularity condition of theorem 3.8 cited above. However, an

adjusted convergence proof is required and referenced in section 3.5.2 of Eymard et al. (2000).
4These are standard methods that do not have references in economics. See Rüemelin (1982) for a comparison of the different

approximation methods for Monte Carlo simulations.
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(a) Uniformly-spaced regular grid (b) Non-uniform regular grid (c) Adaptive grid

Figure 1: Different type of grids: Finite difference method only guarantees the positivity and the conservation
of mass under the uniformly-spaced regular grid.

When one approximates distributions with parametric/non-parametric functions, the biggest difficulty
comes from the computation of the dynamics from the given (approximate) distribution to the resulting
(approximate) distribution consistent with individual behaviors. In the discrete time literature, Ŕıos-Rull
(1999) and Young (2010) compute the dynamics using different sets of interpolations for the histograms.
The finite volume method can be considered as an extension of this approach to continuous time.5 However,
as an advantage of continuous time, the finite volume method results in a more intuitive accounting exercise,
where one accounts for flows between cells instead of relying on interpolations. As an example, consider the
wealth dynamics of a household given by

dx = s(x) dt+ σ dWt t ∈ [0,∞), x ∈ R (1)

where s(x) is the savings behavior of households and σ dWt the (idiosyncratic) exogenous changes in wealth
level with Wt being a Brownian motion. The distribution of households consistent with the given dynamics
is a function over R and is approximated by a discretization of splitting the domain into cells with boundaries
x1, . . . , xn+1. For notation, denote the total mass of households in a given cell, [xi, xi+1], by Gi. Hence,

Gi =

∫ xi+1

xi

g(x) dx. (2)

where g(x) is the density function.
To translate the behavior given in equation (1) to a discretized system, first consider the savings behavior,

s(x). The diagram of the behavior is given in figure 2. Without loss of generality, assume that s > 0 for
the cell under consideration. Over the time step of ∆t, households will save s∆t and end with xprev + s∆t
amount of wealth. Hence, households will move from the ith cell to the (i + 1)th cell (colored red in the
figure) if and only if they were in the range [xi+1−s∆t, xi+1] (shaded yellow in the figure). Letting gi denote
the density of the ith cell (height of the cell in figure), a total of gi · s∆t of households will move from the ith

cell to the (i + 1)th cell. With the assumption of uniform distribution within the cell, i.e., gi ≈
Gi

xi+1 − xi
,

one ends up with the dynamics of

Gi+1,t+∆t = Gi+1,t +
Gi,t

xi+1 − xi
s(xi+1)∆t+ (diffusion term)

Gi,t+∆t = Gi,t −
Gi,t

xi+1 − xi
s(xi+1)∆t+ (diffusion term)

Before proceeding, note that as households flow from cell i to cell (i + 1), the total mass of households is
naturally preserved. Also, the flow out of cell i is non-zero only if Gi,t is positive. Hence, the positivity

5Due to the timing of the literature, (Ŕıos-Rull, 1999; Young, 2010) should, in fact, be considered a discrete time applica-
tion/approximation of the finite volume method.
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Figure 2: As particles flow at the rate s, particles will flow s ·∆t (shown with arrows) in the next ∆t time
period. Hence, the particles within s ·∆t from the boundary flow from the left cell to the right. Hence, a
total of gi · s ·∆t of particles (the area shaded yellow) flows into the right cell over ∆t time period.

of the distribution is preserved. This, again, is not guaranteed with the finite difference method or other
parametric methods.

A similar accounting exercise can be conducted for the diffusion term. The diagram for the diffusion
term is shown in figure 3. With the diffusion, the deviation from the previous values, denoted by arrows
in the figure, is normally distributed around xprev with the variance of σ2∆t. In the figure, as the red
colored particles move to the left cell and the green-colored particles to the right, one has to compute the net
difference of the red and green to account for the net flow between the cells. Since the Gaussian distribution
is symmetric, the difference in the number of particles currently in the cells determines the direction and
size of the net flow across the two cells. As shown in figure 3, if the slope of the distribution function is

given by
dg

dx
, then the difference between ith cell and (i − 1)th cell over a one-standard deviation is given

by the area of the yellow shaded triangle,
dg

dx
σ2∆t. The particles will flow from the right cell to the left

at a rate proportional to the size of the yellow triangle. This is not the exact value as the probability of
crossing the boundary decreases the further away the household is from the cell boundary. A more precise
description/explanation will be given in the next section, but letting C be the proper scale parameter for
now, the resulting discretized system is

Gi+1,t+∆t = Gi+1,t +
Gi,t

xi+1 − xi
s(xi+1)∆t− C dg

dx

∣∣∣∣
xi+1

σ2∆t+O(∆t2)

Gi,t+∆t = Gi,t −
Gi,t

xi+1 − xi
s(xi+1)∆t+ C

dg

dx

∣∣∣∣
xi+1

σ2∆t+O(∆t2)

Making the uniform distribution within cell assumption again,
dg

dx
can be approximated by

dg

dx
≈

Gi
xi+1−xi −

Gi−1

xi−xi−1

xi+1−xi−1

2

resulting in a discretized system only in terms of Gi’s and xi’s. Again, the flow between cells is always
accounted for and the outflow is positive only if the cell has positive mass. Hence, the conservation of mass
and the positivity of distribution hold even with diffusion terms.

It is impossible to summarize the entire literature on the finite volume method in one paper; hence,
in this paper, only the finite-volume discretization scheme with the upwind approximation (defined later)
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Figure 3: For diffusion, particles move randomly from the initial point distributed as N(0, σ
√

∆t). These
movements are denoted by arrows. Given this randomness, particles can move from the left cell to the
right (colored green) and right to left (colored red). For a given particle the same distance away from the
boundary, the probability of moving to the respective cell is the same from the symmetry of the normal
distribution N(0, σ

√
∆t). Hence, the net flow between two cells will depend only on the difference between

the number of particles between the two cells. In the diagram, given the slope of
dg

dx
, ith cell has more

particles corresponding to the yellow-shaded region (draw based on one standard deviation) as the non-
shaded area would cancel, as mentioned above. Therefore, the flow from the ith cell to (i− 1)th cell will be

proportional to
dg

dx
σ2∆t.

is provided for its intuitiveness. The derivations are presented in the next two subsections, but one can
jump to the discretized dynamics given in equation (6) for one dimension, and equation (11) for higher
dimensions. Lastly, though not introduced in this paper for simplicity of discourse, there are many possible
discretization schemes within the finite volume methods, e.g., upwind scheme and centered difference scheme.
The modified upwind scheme of Axelsson & Gustafsson (1979) is recommended for most applications. The
modified upwind method is more accurate than the (simple) upwind discretization, but is more robust to
many applications compared to the center-difference method. The modified upwind method is available in
the open-sourced codes/toolbox and is used for the numerical experiments in section 3.

2.2 One Dimension

Given the behaviors of households, the equation for the distribution (in continuous time) can be written as
a Fokker-Planck-Kolmogorov equation:

dg

dt
= − d

dx
(s(x) · g(x)) + ν

d2g

dx2
(3)

where g(·) is the distribution function.6

The finite volume method discretizes g(x) with the mass in each discretization cell. Given {xi}i∈1,2,...,n+1

as the cell boundaries, the distribution is approximated by the vector

6Refer to Achdou et al. (2017) for an intuitive introduction.
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~G =


G1

G2

...
Gn


where Gi’s are the mass in the cell [xi, xi+1] given by

Gi =

∫ xi+1

xi

g(x) dx (4)

Dynamics of the ~G can be computed using equation (3) and (4):

dGi
dt

=

∫ xi+1

xi

dg

dt
dx

=

∫ xi+1

xi

− d

dx
(s(x) · g(x)) + ν

d2g

dx2
dx

= − (s(x) · g(x))|xi+1

xi
+ ν

dg

dx

∣∣∣∣xi+1

xi

= − (s(xi+1) · g(xi+1)) + (s(xi) · g(xi)) + ν
dg

dx
(xi+1)− ν dg

dx
(xi) (5)

Before proceeding, equation (5) shows a reason to use the finite volume discretization. Any increase of one

cell either from s · g or
dg

dx
term is from a decrease of the same magnitude in a neighboring cell. Hence, the

discretization is guaranteed to preserve mass.
To finish the discretization, since only {Gi}’s and {xi}’s are allowed in the discretized system, s · g and

dg

dx
need to be approximated in terms of {Gi}’s and {xi}’s. There are many different approximations in the

mathematics literature, and different approximations will lead to differences in accuracies. However, there
is one very natural approximation. Suppose that the “g(x)” is assumed to be constant within a cell. Then

g(x) ≈ Gi
xi+1 − xi

∀x ∈ [xi, xi+1]

As the size of the cell decreases, the approximation error will decrease. A similar approximation can be
made with dg

dx assuming constant values within the cell and applying a finite difference approximation:

dg

dx

∣∣∣∣
xi

≈
g
(
xi+xi+1

2

)
− g

(
xi−1+xi

2

)
xi+1−xi−1

2

=

Gi
xi+1−xi −

Gi−1

xi−xi−1

xi+1−xi−1

2

Following the upwind scheme of choosing the g(x) from the direction of the flow to ensure positivity of the
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Figure 4: Regular Cell

Ei,j,1

Ei,j,2

Ei,j,6 Ei,j,5

Ei,j,3

Ei,j,4

Gi,j

Figure 5: Cell with Adapted Neighbors

distribution7 and putting above approximations together, the final discretization equation is:

dGi
dt

=−
[
s(xi+1) ·

(
Gi+1

xi+2 − xi+1
· 1(s(xi+1) < 0) +

Gi
xi+1 − xi

· 1(s(xi+1) > 0)

)]
(6)

+

[
s(xi) ·

(
Gi

xi+1 − xi
· 1(s(xi) < 0) +

Gi−1

xi − xi−1
· 1(s(xi) > 0)

)]
+ ν

[
2Gi+1

(xi+2 − xi+1) · (xi+2 − xi)
− 2Gi

(xi+1 − xi) · (xi+2 − xi)

]
− ν

[
2Gi

(xi+1 − xi) · (xi+1 − xi−1)
− 2Gi−1

(xi − xi−1) · (xi+1 − xi−1)

]
Though seemingly messy, each element of equation (6) simply accounts for flows between cells from the drift

or the diffusion. Also, the expression is linear in ~G, which results in a simple matrix equation of

d~G

dt
= A~G (7)

where A is the matrix representation of equation (6).
Equation (7) highlights two advantages of the finite volume method.8 First, the linearity of equation (7)

allows one to leverage the literature on numerical linear algebra. For example, solving for the steady state
just requires solving a linear system A~G = 0, which has a very fast solution method. Second, equation (7)
separates the drift/diffusion dependent part of the equation from the distribution dependent part through
a matrix multiplication. This simplifies the implementation of the finite volume method. If a program
constructs the matrix A given the grid, drift and diffusion, one can compute the dynamics of the distribution
through simple matrix operations. Working with matrix operations vastly simplifies the implementation
compared to problem-specific interpolations. This is the approach taken with the open-sourced code where
a grid class generates the matrix A given the grid, the drift terms, and the diffusion terms.

2.3 Higher Dimension

The same concept can be generalized to higher dimensional Fokker-Planck equations. In one-dimension, the
only possible way of discretizing the space was to use histograms/intervals. However, in higher dimensions,

7This is only first-order accurate, and the author recommends using the modified upwind scheme introduced in Axelsson &
Gustafsson (1979), where the diffusion term is adjusted to increase accuracy. The implementation is provided at <https://

github.com/sehyoun/adaptive finite volume>. The center difference scheme is also available there. The scheme to use depends
on the application, but for most applications, the modified upwind scheme strikes the best balance between accuracy and
generality.

8These advantages are shared with the finite difference method, and can thus be considered the advantages of the continuous
time approach.
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there are many ways to discretize the space. In this paper, however, only rectangular grids, where edges are
parallel to a coordinate direction as shown in figure 1b and figure 1c, will be considered. Taking one cell
from a two-dimensional grid, the flows from the discretized cell are visualized in figure 4.9 Again, consider
the Fokker-Planck-Kolmogorov equation in n-dimension:

dg

dt
= −

n∑
k=1

d

dxj
(sj(x) · g(x)) +

n∑
k=1

νj
d2g

dx2
j

(x) (8)

Before proceeding, for simplicity let i = (i1, i2, . . . , in) be a multi-index, and −ik = (i1, . . . , ik−1, ik+1, . . . ,
in). As in one dimension, the total mass in a given cell is used for the discretization, i.e.,

Gi = Gi1,i2,...,in =

∫
· · ·
∫

Gi

g(x) dx =

∫ xn,in+1

xn,in

· · ·
∫ x1,i1+1

x1,i1

g(x) dx1 . . . dxn (9)

Using equation (8) and equation (9), one gets

dGi

dt
=

∫
· · ·
∫

Gi

dg

dt
dx

=

∫
· · ·
∫

Gi

n∑
k=1

[
(− d

dxk
(sk(x) · g(x)) + νk

d2g

dx2
k

]
dx

=

n∑
k=1

∫
· · ·
∫

Gi

[
− d

dxk
(sk(x) · g(x)) + ν

d2g

dx2
k

]
dx

=

∫
· · ·
∫

G−i1

[
− (s1(x) · g(x))|x1,i1+1

x1,i1
+ ν

dg

dx1

∣∣∣∣x1,i1+1

x1,i1

]
dx−1 +

n∑
k=2

. . .

=

∫
· · ·
∫

G−i1

−s1(x1,i1+1, x−i1) · g(x1,i1+1, x−i1) + s1(x1,i1 , x−i1) · g(x1,i1 , x−i1)

+ ν
dg

dx1
(x1,i1+1, x−i1)− ν dg

dx1
(x1,i1 , x−i1) dx−1 +

n∑
i=2

. . .

=

∫
· · ·
∫

G−i1

[
−s1(x1,i1+1, x−i1) · g(x1,i1+1, x−i1) + ν

dg

dx1
(x1,i1+1, x−i1)

]
dx−1

+

∫
· · ·
∫

G−i1

−1 ·
[
−s1(x1,i1 , x−i1) · g(x1,i1 , x−i1) + ν

dg

dx1
(x1,i1 , x−i1)

]
dx−1

+

n∑
i=2

. . .

=
∑

E∈edges

∫
· · ·
∫

E

(1− 2 · χlower(E))

[
−sE(x) · g(x) + ν

dg

dxE
(x)

]
dx−i (10)

where χlower(·) is an indicator function that is 1 if the edge is lower and 0 if upper and the subscript E
denotes the coordinate direction of the edge.10

9The calculation given below can be generalized to cells with non-parallel edges by computing the dot product between the
flows and the normal direction of the edge. This is an application of Stokes’ theorem, but the dot product is not necessary
when the edges are parallel.

10For example, in figure 4, for the cell Gi,j , χlower(Ei,j,1) = 1, χlower(Ei,j,2) = 1, χlower(Ei,j,3) = 0, and χlower(Ei,j,4) = 0.
In mathematics, this idea is summarized by the “normal direction” of the surface. The concept is not introduced in this paper
for simplicity.
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The discretization given in equation (10) is the same as one dimension except that the cell boundaries
are Rn−1-dimensional hyperplanes and one needs to compute an integral over the hyperplane to get the total
flow from one cell to the other. One can make a constant-within-cell approximation to get,∫

· · ·
∫

E

(1− 2 · χlower(E))

[
−sE(x) · g(x) + ν

dg

dxE
(x)

]
dx−i

= (1− 2 · χlower(E))

[
−sE(x̃) · g(x̃) + ν

dg

dxE
(x̃)

] ∫
· · ·
∫

E

1 dx−i

= (1− 2 · χlower(E))︸ ︷︷ ︸
flow direction

[
−sE(x̃) · g(x̃) + ν

dg

dxE
(x̃)

]
︸ ︷︷ ︸

flow rate at the edge

·m(E)︸ ︷︷ ︸
area

where x̃ ∈ E is a point to approximate the function values within the edge, and m(E) is the area of the
surface. This expression has a very intuitive interpretation. The rate of increase of the mass of a given cell
is determined by the direction and flow rate at the boundary multiplied by the size of the boundary. In
other words, the flow through a tube is the product of the speed of the water and the size of the tube. This
product does not exist in the one-dimensional case, but exists in all other dimensions.

Finally, one can make the same approximation for s(x) · g(x) and
dg

dx

∣∣∣∣
x

as in one dimension, and end

up with the discretized system. For simplicity of notation, let i|E be the index for the cell across the edge
E,11 then

dGi

dt
=

∑
E∈edges

(1− 2 · χlower(E))

[
−sE(x̃) · g(x̃) + ν

dg

dxE
(x̃)

]
·m(E)

=
∑

E∈lower edges

(−1) ·
[
−sE(x̃) · g(x̃) + ν

dg

dxE
(x̃)

]
·m(E)

+
∑

E∈upper edges

[
−sE(x̃) · g(x̃) + ν

dg

dxE
(x̃)

]
·m(E)

=
∑

E∈lower edges

[
sE(x̃) ·

(
Gi

m(i)
· 1(sE(x̃) < 0) +

Gi|E
m(i|E)

· 1(sE(x̃) > 0)

)
− ν dg

dxE
(x̃)

]
·m(E) (11)

+
∑

E∈upper edges

[
−sE(x̃) ·

(
Gi

m(i)
· 1(sE(x̃) > 0) +

Gi|E
m(i|E)

· 1(sE(x̃) < 0)

)
+ ν

dg

dxE
(x̃)

]
·m(E)

where

dg

dx
(x̃) ≈

(
± Gi|E
m(i|E) ∓

Gi

m(i)

)
∆x

Theorem 3.8 from Eymard et al. (2000) applies, the discretized solution approaches the true solution with
finer grid points. This seemingly daunting expression just accounts for drifts and diffusions through edges.
The expression is, again, linear in ~G and can be written as

d~G

dt
= A~G (12)

with all the benefits noted in section 2.2 carrying over. To reiterate, this means that applied researchers do
not need to worry about the implementation of the equation (11) and just specify the drift and diffusion at
boundaries to get the matrix A from the computer.

11For example, in figure 4, (i, j)|Ei,j,1 = (i−1, j), (i, j)|Ei,j,2 = (i, j−1), (i+1, j)|Ei,j,3 = (i+1, j), and (i, j)|Ei,j,4 = (i, j+1).
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2.4 Non-Regular Grids

One advantage of the finite volume method given in equation (11) requires a special attention. One only
needs to account for the flows across edges following the discretized equation (11). Hence, the discretization
can be applied to more complex grid structures than the regular grid, like the adaptively refined discretization
of figure 1c. Now, consider the calculation of the dynamics for one cell given in figure 5: though cell Gi,j
has non-standard edges, the only difference is that there are more edges to consider, and equation (11)
still gives the dynamics across each edge. This flexibility is tested in section 3, where the finite volume
method is applied with (i) a uniformly spaced regular grid, (ii) a non-uniformly spaced regular grid, and
(iii) a (semi-structured) adaptive grid an shown in figure 1. This is in stark contrast to the finite difference
method that does not even generalize to the non-uniform regular grid without losing the mass conservation
and positivity.12 Further, with semi-structured grids, it is unclear how the finite difference method can even
be applied. In comparison, even with the semi-structured grid, the finite volume method results in the linear
discretized equation given in equation (12). This allows one to outsource the construction of the matrix A
of equation (12) to a computer by supplying only the drifts and diffusions at the edges. Hence, even with
semi-structured grids defined with adaptive refinements, one can just use matrix operations to compute the
dynamics of distributions using equation (12).

2.4.1 Adaptive Refinement

Given the flexibility, the question of finding a reasonable grid still remains. One method of refinement is
to iteratively/adaptively add more grid points based on an error metric/estimate from the current solution.
Lan et al. (2002) suggests many different refinement metrics, but notes that “normalized gradients” are
sufficient for most cases. Following this advice, the adaptation metric tested was based on the normalized
gradient where the normalization is by the fraction of the distribution in the cell, i.e.,

metric ≈ Gi · drift

(
xi + xi+1

2

)
. (13)

This metric is intuitive. If the drift is small, the uniformity assumption is accurate. Otherwise, if the mass
of the cell is small, the expected gain from splitting the cell is small. Hence, the cell should be refined/split
only when both the drift and the fraction of the cell are large.13 In practice, the normalized drift is a good
starting point, but other metrics can be used as well. For example, for the life-cycle model, weighting younger
generations leads to faster improvements. This is intuitive as the accuracy of the young affects the accuracy
of the old. The finite volume method is flexible enough to handle this intuitive metric of grid refinement.

2.5 One Method to Rule Them All

Though it does not fit with the flow of the paper, one comment is required before the numerical experiments.
There is no single method that is the best for all applications. Even within the finite volume method, there
is a tradeoff between flexibility and speed. Adaptive grids give flexibility, but at the cost of speed (compared
to the regular grid). In practice, a regular grid should be used unless a gain from adaptive refinements is
expected. For example with the experiments conducted in section 3, using the flexibility leads to a speed
loss without any gain for the Ornstein-Uhlenbeck process, but leads to a compression and accuracy gain
with economic problems. The Aiyagari-Bewley-Huggett model requires only 58% of grid points to achieve
equal accuracy as a regular grid and the lifecycle model 14%. However, this is at the cost of some additional
computation. This cost would be regained if one uses the perturbation method introduced in Ahn et al.
(2018) since the solution method (without model reduction) scales at O(N3).14 Hence, the 14% compression
of adaptive method leads the adaptive grid to scale at 0.2%(= 0.143) of the regular grid in the perturbation
step.

12Achdou et al. (2017) generalizes the finite difference to the non-uniform regular grid, but the method introduced there
requires adjustments that make the resulting scheme no longer the finite difference method. In fact, one can consider the
suggested adjustment as an approximation of the finite volume method, and in the limit of decreasing grid-size, the adjusted
scheme converges to the finite volume scheme.

13Note that this is why cells should not be adapted only based on the mass, which might seem intuitive initially.
14The scale comes from the QZ/Schur-decomposition step. See Ahn et al. (2018) for more details.
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#(grid) per dimension 10 20 40 80 160 320 640 1280
Compute Time (sec) 0.0015 0.0024 0.0062 0.030 0.081 0.37 1.97 10.33
Total Variation Metric 5.9e-2 2.3e-2 7.1e-3 2.0e-3 5.4e-4 1.4e-4 3.6e-5 9.2e-6

Table 2: Accuracy and compute time of the finite volume method to the 2-D Ornstein-Uhlenbeck Process
with θ = (1, 1)T , σ = (0.1

√
2, 0.1

√
2)T , and µ = (0.495, 0.495)T .

The tradeoff between methods exists between the Monte Carlo method and the finite volume method
as well. Though only the benefits of the finite volume method over the Monte Carlo method are presented
as the Monte Carlo method is the literature standard, the two methods scale differently. The Monte Carlo
method scales at O(N2) independent of the dimensionality of the problem, but the finite volume method
(or other function approximation methods) scale at O(Nd) where d is the dimensionality of the problem.
Therefore, at some scale of the problem the Monte Carlo method will outperform the finite volume method.15

As tested in section 3, the current generation of economic models have not reached the point where the
Monte Carlo methods outperform the function approximation methods. However, with future generations
of heterogeneous agent models, the Monte Carlo method can outscale function approximation methods.

The result of a cost-benefit analysis of different methods is application-dependent. As estimating the
result of the cost-benefit analysis is hard, one should always test. The companion codes should reduce the
implementation time for testing the finite volume method.

3 Numerical Experiment

3.1 Exact Solution: Ornstein-Uhlenbeck Process

First, the finite volume method is tested on a problem with a closed-form solution. Consider the following
Fokker-Planck equation

∂f

∂t
=
∑
i

θ
∂

∂xi
[(xi − µ) · f ] +

∑
i

σ2

2

∂2f

∂x2
i

(14)

where θ, σ > 0. This is the Fokker-Planck equation induced by the Ornstein-Uhlenbeck process:

dxt = θ(µ− xt) dt+ σ dWt.

One can explicitly check that

f(x) =

√
θ

πσ2
e−θ

(x−µ)2

σ2

is the steady-state distribution of equation (14).16

As the exact solution is known, the explicit distance between distributions can be computed instead of
differences in some moments. The total variation metric defined as

µ(p, q) = max
A∈P(Ω)

p(A)− q(A)

for two given probability measures p and q is used.17 The value of the total variation metric from the
finite-volume approximation is given in table 2, and shows that the finite volume method is very accurate for
computing the steady state distribution of the Ornstein-Uhlenbeck process. As a reference point, the total

15There is a different scale problem when one considers the heterogeneous agent model where one only knows individual
behaviors on a grid. See appendix A for more details.

16When this problem is solved numerically, a finite domain is taken. With the introduction of the boundary, a boundary
condition needs to be specified. Usually, the reflecting boundary condition is used. Hence, for the approximation to be equal
to the exact solution, the domain needs to be large enough for the given value of σ.

17Total variation metric is one of the distance metrics for probability measures. Compared to the Kullback-Leibler divergence
or the Wasserstein metric, the total variation distance is easier to compute numerically.
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variation distance of two normal distributions, N(θ1, 1) and N(θ2, 1), is given by

√
π

2
|θ1 − θ2|. Therefore,

the total variation distance of 9.23 · 10−6 corresponds to the difference of 7.36 · 10−6 if reinterpreted as a
shift of means of two normal distributions.

The result can be compared to Monte Carlo simulations. For Monte Carlo simulations, agents can be
directly simulated from the Ornstein-Uhlenbeck process

dxt = −θ(xt − µ) · dt+ σ dWt

Unfortunately, the computation of the total variation metric is not possible with the Monte Carlo simulation
without further approximations,18 so the relative errors of the first and second moments of the steady
state distribution are reported instead. Further, there is no benchmark implementation of the Monte Carlo
simulation, and the Monte Carlo simulation can be tuned for specific problems. For this particular simulation,
1) the initial agents are sampled from the exact steady-state distribution, 2) the time discretization of
∆t = 0.01 with 100 time steps are used, and 3) Heun Scheme is used for the discretization of the stochastic
process.19 Starting with the initial draws from the correct distribution is not feasible in practice, but this
assumption is made for the numerical comparison as it uniquely pins down the initial distribution and gives
the best advantages to the Monte Carlo simulation.20 Lastly, to approximate sampling errors, the simulation
is repeated 100 times to get the distribution of the errors.

Figure 6 and figure 7 show the errors on their computation time of the finite-volume method with regular
grid and the Monte Carlo simulations. One can see from the absolute error in the mean in figure 6 that
the finite-volume method is multiple orders of magnitude faster than the Monte Carlo simulation. From
the same plot, one can see the sampling error of the Monte Carlo simulation, the orange and yellow lines
show the 5/95%-quantile values from the Monte Carlo simulations, and the errors are a further two orders of
magnitude higher compared to the median value. The error metric on variances leads to similar conclusions.
The accuracy of the finite volume method is at the same level as the median value of the 100 Monte Carlo
simulations, but faster and scale better than the 5/95% quantile value fo the variances of the 100 Monte
Carlo simulation runs.

3.2 Wealth + Income Shock (Aiyagari-Bewley-Huggett) Model

For the first economic application, a heterogeneous agent model with wealth and income heterogeneity,
known as the Aiyagari-Bewley-Huggett model in literature, is solved. As this model is standard, the model
is not described in detail, see Achdou et al. (2017) for a more detailed description of the model (in continuous
time). Households solve the optimization problem

max
c

∫ ∞
t=0

e−ρtu(c) dt

da = (r · a+ w · z − c) · dt
dz = µz(z) dt+ σz(z) dWt

a ≥ a
18One would compute an approximation of the total variation metric with kernel smoothing, but then the metric is no longer

a simple analysis of the accuracy of the Monte Carlo procedure.
19The Heun scheme is given by

x′t+∆t = −θ(xt − µ) ·∆t+
√

∆t · σ · ε ε ∼ N(0, 1)

xt+∆t = −θ
(
xt + x′t+∆t

2
− µ

)
∆t+

√
∆t · σ · ε.

The Heun scheme is considered more accurate compared to the standard Euler-Maruyama scheme given by

xt+∆t = −θ (xt − µ) ∆t+
√

∆t · σ · ε ε ∼ N(0, 1).

See Rüemelin (1982) for accuracy comparison between different discretization methods. One can also check Zahri (2009) for
the results of other numerical experiments with different Monte Carlo schemes.

20This means that one should be careful about accuracy results when reducing the number of simulation steps in the replication
file as it is started from the correct distribution.
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Figure 6: Absolute error in estimates of the mean from the finite volume method and the Monte Carlo
simulations. As each Monte Carlo simulation results in different values of the mean, 100 separate simulations
were run and the errors from the median, 5% and 95% quantile values are shown.

Figure 7: Relative error in estimates of the variance from different methods. As each Monte Carlo simulation
results in different values of the variance, 100 separate simulations were run and the errors from the median,
5% and 95% quantile values are shown.
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where

a wealth

z (idiosyncratic) income state

a Borrowing Constraint

r interest rate on wealth

w wage

ρ discount rate

u(·) utility function

Wt Brownian motion

c Consumption

Let c∗(a, z) be the optimum value from the optimization problem solved from the dynamic programming,
then the dynamics induced for an individual is

da = (r · a+ w · z − c∗(a, z)) · dt (15)

dz = µz(z) dt+ σz(z) dWt (16)

a ≥ a

The dynamics above induces the Fokker-Planck equation of

∂

∂t
g(a, z) = − ∂

∂a
[(r · a+ w · z − c∗(a, z))g(a, z)]− ∂

∂z
[µ(z)g(a, z)] +

1

2
σz(z)

2 ∂
2

∂z2
g(a, z)

with the resulting steady-state equation of

0 = − ∂

∂a
[(r · a+ w · z − c∗(a, z))g(a, z)]− ∂

∂z
[µ(z)g(a, z)] +

1

2
σz(z)

2 ∂
2

∂z2
g(a, z) (17)

Given the behavior and the aggregate dynamics induced from the behaviors, the economy is closed with
equilibrium conditions of

K =

∫ ∫
a · g(a, z) da dz

L =

∫ ∫
z · g(a, z) da dz

w = (1− α) ·
(
K

L

)α
r = α ·

(
L

K

)1−α

Note that K̃ :=
K

L
determines both w and r. Therefore, K̃ determines the equilibrium, and in subsequent

sections, K̃ is used as a scalar metric of comparison for different methods. Given the Fokker-Plank equa-
tion (17), the discretization can be implemented directly following equation (11) independent of the type of
grid under consideration. As noted before, the construction of matrix A of equation (12) can be handled by
the computer, and one only needs to specify drifts and diffusions at cell boundaries.

The model is solved for different (uniform) regular grids with adaptive refinements. The equilibrium
amount of capital using different grids with the finite volume method is given in figure 8. The finite-volume
method without adaptive refinements, shown with red dots, clearly shows convergence as predicted by the
theory. The same figure also gives the equilibrium capital resulting from adaptive refinements in the wealth
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Figure 8: Convergence to the true solution given the number of grid points based on the number of adaptive
refinement of the grid. The plot shows multiple regular grids (red dots) and the subsequent iterative refine-
ments (dashed lines). The red dots and dashed lines show clear convergence as proven in theory (x-axis is
within 0.1% of the limiting value). At the magenta line, the adaptive methods only require 42% of the grid
points of the regular grid to get the same accuracy.

Number of households 102 103 104 105 106

std(Kt)

K
10.31% 2.89% 0.750% 0.275% 0.0948%

max(Kt)−min(Kt)

K
66.63% 19.19% 4.82% 1.72% 0.559%

Table 3: K = 3.7285 is taken as 3.7285.

dimension based on the following metric.21

metric = (r · ai + w · zj − c∗(ai, zj))︸ ︷︷ ︸
drift

· Gij · ai︸ ︷︷ ︸
normalization

Hence, in each iteration, a cell is split in half if it is in the top 10% of the metric values or if the neighboring
points have been refined further than the cell under consideration.22 Unlike the Ornstein-Uhlenbeck process
in the previous section, adaptive refinements lead to faster convergence (in number of grid points) compared
to a non-adapted grid. To get the equilibrium capital value of 3.73 (∼ 0.05% error), one needs 42% of grid
points compared to that of the regular grid without adaptive refinements. To reiterate the point made in
section 2.5, the speed gain is expected to be 93% (= 1 − 0.423) for the perturbation method introduced in
(Reiter, 2009; Ahn et al., 2018).

This can be compared with the computation of the equilibrium value of capital based on the Monte-Carlo
simulation. The sampling error involved in the Monte Carlo simulation is prohibitive enough to make the
computation of the equilibrium level of K̃ impossible in a reasonable time. This can be seen from figure 9
that plots the capital supply given the prices from K̃ = 3.7285 over a simulation period of 5000 years (with
time-step of 0.01). Though the capital supply is a constant, the simulated capital supply shows nontrivial

21Allow splitting cells in wealth direction, but not in income direction.
22These are all hyperparameters to the adaptive refinements and can be adjusted for different applications.
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Figure 9: Monte Carlo simulation of capital supply from prices induced from K̃ = 3.7285. As there is no
aggregate shock, there is one (constant) value of capital supply. All variations in the figures are from the
sampling error. This type of simulations shows what the expected sampling error of the stochastic simulation
methods such as Krusell & Smith (1998) given the number of agents.

dynamics.23 The errors from sample runs are summarized in table 3, where the (normalized) standard
deviation and maximum range of the simulated capital are computed over 10,000 years with ∆t = 0.01.
Note that even with 100,000 households, the sampling error is 0.275% in standard deviation24 and 1.72%
in the maximum range.25 Hence, the number of households required to achieve reasonable accuracy can be
quite high for the (Wealth+Income)-heterogeneity model. Algan et al. (2014) noted that sampling errors
can mask the aggregate dynamics, and this simulation confirms that sampling errors can create dynamics
where none exists. This sampling error makes the standard bisection method infeasible for the Monte Carlo
simulation within a reasonable time. Hence, one would need to use a different method that would scale worse
than O(log(n)) to find the steady state value. In fact, it was not possible to create a robust method that

guarantees the convergence to the steady-state K̃ within a reasonable time.
The computation time of the simulation with 100,000 households is in the scale of hours.26 This is in

contrast to seconds or minutes for the finite volume method that gives the equilibrium value of K̃ at much
higher accuracy than even just the sampling error. This significant speed loss can seem contradictory to the
similar scale from the previous experiment on the Ornstein-Uhlenbeck process. However, this arises from
the method of approximating behaviors from the dynamic programming. About 80% of the compute time
of the Monte Carlo simulation comes from the interpolation. This is because the interpolation locations
have to be found repeatedly with Monte-Carlo simulations as the evaluation points change throughout
the simulation (see appendix A for a more detailed explanation of this paragraph). In comparison, the
interpolation locations need to be found only once for the finite volume method. This means that the Monte
Carlo method is expected to scale worse with higher dimensional HJB equations at log(nHJB ·nsimulation). The
finite volume method, on the other hand, is expected to scale at (log(nHJB) + nsimulation). This explains the
slowdown of the Monte Carlo method in the Aiyagari-Bewley-Huggett model in comparison to the Ornstein-
Uhlenbeck process of the previous section that did not require interpolations. In economics, a method does
not exist on its own and the interaction with other parts of the computation need to be considered. The
finite volume method (in continuous time) interacts better with the dynamic programming for computing
the behaviors of agents than the Monte Carlo simulation leading to improved accuracy with less compute

23One can also compute the capital supply by following one agent over time, but a population is simulated as the resulting
figure 9 gives a better visualization of the sampling error. The number of agents required in the population would be translated
to the length of simulation for the one-agent simulation. Also, sampling of the population mirrors the procedure used under
the stochastic simulation algorithms like Krusell & Smith (1998).

24L2-norm
25L∞-norm.
26The precise computation time depends on hyperparameters like the burn-in and time-step size.

16



time.

3.3 Liquid Wealth + Income Shock + Life-cycle Model

For the last numerical experiment, age is introduced to the Aiyagari-Bewley-Huggett model. Under this
specification, households solve the optimization problem

max
c

E
[∫ τ

t=0

e−ρtu(c) dt+ e−ρτB(aτ )

]
da = (r · a+ w · φage · z − c) · dt
dz = µz(z) dt+ σz(z) dWt

dage = 1

xage ∈ {alive,dead} poisson process with transition probability λage

τ = min {age : xage = dead}
a ≥ a

where the new parameters are

τ (stochastic) death age

B(·) Bequest motive

φage Age-Income Gradient

Letting c∗(a, z, age) denote the optimal consumption decision, the induced Fokker-Planck equation is

∂

∂t
g(a, z, age) =− ∂

∂a
[(r · a+ w · z − c∗(a, z, age))g(a, z, age)]

− ∂

∂z
[µ(z)g(a, z, age)] +

1

2
σz(z)

2 ∂
2

∂z2
g(a, z)

− ∂

∂age
g(a, z, age)

− λageg(a, z, age)

with the initial condition at age = 25 of

g(a, z, 25) = g25(a, z)

given.
As people in different parts of their life-cycle have different wealth levels, a large gain is expected for this

problem from adaptive refinements. Figure 10, where each dot denotes the center of a cell, shows the result
of adaptive refinements with the finite volume method. It is clear that the wealth refinements need to differ
based on their age, and the finite volume method tracks the distribution well over the life-cycle. This would
not be feasible with the finite difference method that requires uniform regular grids (for mass conservation
and positivity).

Figure 11 plots the results from uniform regular grids with adaptive refinements on asset grids. For the
lifecycle problem, the refinement metric that performed best was

metric = (r · ai + w · zj − c∗(ai, zj , agek))︸ ︷︷ ︸
drift

·Gijk · (150− age) · (ai+1 − ai)︸ ︷︷ ︸
normalization

Hence, in each iteration, a cell was split when it was in the top 100 in the metric values. The notable
difference compared to the previous section is the (150 − age) term. This introduces the intuition that
computing the distribution of young is more important as the approximations on young affect the values of
older households. As can be seen from figure 11, the finite volume method clearly converges (as predicted
by theory), and adaptive refinements lead to faster convergence (in number of grid points). For example, as
shown by the magenta line in figure 11, one only needs 14.5% of grid points of the regular grid to achieve a
similar level of accuracy.
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Figure 10: Adaptively refined grid with the finite volume method. Each dot denotes the center of discretiza-
tion cells.

Figure 11: Convergence to the true solution given the number of grid points based on the number of adaptive
refinements of the grid for the life-cycle model (partial equilibrium). The plot shows regular grids of different
sizes (red dots) with subsequent adaptive refinements (dashed lines). At the magenta line (K = 15.85), an
adapted grid with 14.5% of grid points is sufficient to match the accuracy of the regular grids.
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4 Conclusion

This paper is a bridge paper connecting the mathematics literature on the finite volume method to the
economics literature on computing aggregate distributions in heterogeneous agent models. With the flexi-
bility to use non-uniform regular grids and adaptive refinements while retaining the mass conservation and
positivity, the finite volume method has benefits over pre-existing methods. For the test problems, the finite
volume method outperforms pre-existing methods, and especially the Monte Carlo simulation method.

In applications, the best numerical method will depend very much on the problem at hand, and one
should not conclude that the finite volume method is the best method for all applications. One should
always test different methods, and the intuition introduced in this paper with the companion codes should
allow researchers to test the finite volume method without incurring too many programming hours. The
open-sourced code, however, is not at the limit of the applicability of the finite-volume method. For future
research, one can consider using even more non-structured grids for the finite-volume method presented in
Eymard et al. (2000) and using parallel computing.
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Eymard, R., Gallouët, T., & Herbin, R. (2000). Finite volume methods. Handbook of numerical analysis,
7 , 713–1018.
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A A Practical Aside: Interpolations

Interpolations are ubiquitous in the methodology literature. In fact, the procedures introduced under Ŕıos-
Rull (1999) and Young (2010) rely on interpolations. Though people write “... then we just interpolate...”
frequently without giving much attention, interpolations can be the most costly bottleneck. As an extreme
example, Brumm & Scheidegger (2017) reports that 99% of their calculation time is spent on interpolations,
and in the Monte Carlo simulation of the Aiyagari-Bewley-Huggett model, 80% of calculation time was
spent on interpolations. Sometimes, this is just an intrinsic limit of the given problem, but it can be a
result of an inefficient implementation of the interpolation. To see why, consider the linear interpolation in
one-dimension. The interpolated value at x is given by

f̃(x) = f(xi)
xi+1 − x
xi+1 − xi

+ f(xi+1)
x− xi

xi+1 − xi
x ∈ [xi, xi+1] (18)

where {xi}’s are the knot points of the interpolation. The calculation of equation (18) is actually two
separate operations. One searches for the index i such that x ∈ [xi, xi+1] first, and then evaluates the
algebraic expressions given the xi, xi+1, f(xi) and f(xi+1). Costs of the two operations scale differently. For
the search problem, if one just checks through all xi’s to find the interpolation location, then the operation
scales at O(nknots) as one reads nknots points. In applications with structured knot points, one can do better
and the search problem can be reduced to scale at O(log(nknots)), for example, by using the bisection method.
On the other hand, the evaluation of the interpolated value scales at O(1).27 Even though log scale is fast,
it still scales worse than the constant scale, and even small value of log(nknots) lead to a speed loss of a
few hundred percentages as it is multiplicative. Therefore, the search for the interpolation locations is the
expensive part of the interpolation, not the evaluation. This applies to all “local” interpolation methods like
the linear or the cubic interpolation.

Now, if the interpolation is repeated N times and the interpolation locations are found repeatedly, the
computation scales at

O(nevaluation · log(nknots) ·N) (19)

27It is 9 in equation (18).
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However, if one can reuse the search results, one can reduce the scale to

O(nevaluation · log(nknots) + nevaluation ·N) (20)

This difference in the scale makes a very practical difference for large N , and some numerical methods can
reuse the search results more naturally than others.

With the finite volume method, the interpolation locations depend only on the grid, not on the parameter
values. Therefore, the search problem only needs to be handled once. Unfortunately, with the Monte Carlo
simulation, the interpolation location changes every evaluation, not just with new parameters. Hence,
the scale of the Monte Carlo simulation scales as equation (19) while the finite volume method scales
as equation (20). For many heterogeneous agent models, nknots is the number of grid points required in
approximating the value function, and exhibits the curse of dimensionality. The Monte Carlo simulation will
subsequently inherit and amplify the curse of dimensionality from the dynamic programming. In comparison,
the finite volume method only needs to incur the cost once.

This interpolation difference exists even within the function approximation framework, and explains some
of the speed differences between continuous time and discrete time methods. In continuous time, the search
problem only depends on the grids, but not on the specific parameter values. However, under discrete time
methods, the search problem depends on both the grids and parameter values, and the search problem needs
to be resolved for new parameter values. Of course, in practice, the interpolation locations will not change
too much for a new set of parameters, and an implementation can and should leverage previous search
results to reduce the scale dependence from log(nknots). However, this is problem-dependent and requires
programming hours for customization. Hence, in practice, many practitioners just rebuild the interpolation
locations from scratch in every iteration resulting in the effective scale of O(nevaluation · log(nknots) ·N) though
the intrinsic scale of the problem might be smaller.28 Of course, this recycling of search results is automatic
in continuous time.

B Implementation

For numerical experiments, two different implementations in MATLAB are used. One data structure is for
uniform/non-uniform regular grids. The other data structure allows the introduction of any rectangular-
shaped cells, such as those seen in figure 1c. One pays for the added flexibility with the computation cost. As
the open-sourced codes are provided at <https://github.com/sehyoun/adaptive finite volume> and the
specific implementation can be updated in the future, the technical details of implementations are delegated
to the codes and the documentation is available at <https://sehyoun.com/adaptive finite volume>.

28I have not yet seen any example of an economist recycling search results for a efficiency gain in discrete time. This is
sensible if one takes into account the programming time, but this would restrict the size of problems researchers would handle.
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